Pairing-free secure-channel establishment in mobile networks
with fine-grained lawful interception

Xavier Bultel' and Cristina Onete?

1 INSA Centre Val de Loire, LIFO, Bourges, France
2 XLIM, University of Limoges, France

Abstract. Modern-day mobile communications allow users to connect from any place, at any time.
However, this ubiquitous access comes at the expense of their privacy. Currently, the operators
providing mobile service to users learn call- and SMS-metadata, and even the contents of those
exchanges. A main reason behind this is the Lawful-Interception (LI) requirement, by which serving
networks must provide this (meta-)data to authorities, given a warrant.

At ESORICS 2021, Arfaoui et al. pioneered a primitive called Lawful-Interception Key-Exchange,
which achieves the best of both worlds: (provably) privacy-enhanced communications, and fine-
grained fine-grained, limited access to user data. Their work had two important shortcomings. First,
their protocol required pairings which, while sufficiently efficient, might not always be available in
the mobile setting. More importantly, that scheme was only applicable in a domestic setting, where
the concerned users (Alice and Bob) were subject to the same LI authorities. The case of roaming
was left as an open question.

In this paper we answer that open question. We extend the framework of Arfaoui et al. to allow
Alice and Bob (now subject to potentially two sets of authorities) to establish a secure channel that
guarantees the strong properties afforded by the LIKE schemes of ESORICS 2021. Our construction
is pairing-free, faster than that of Arfaoui et al., and its security relies on standard assumptions.

Keywords: Lawful interception, roaming, mobile networks, 5G

1 Introduction

End-to-end secure communication is one of cryptography’s most fundamental and researched topics. In
short, secure-channel establishment allows peers Alice and Bob to exchange messages over an open line,
such that: no one but themselves can learn anything about the contents of those messages (confiden-
tiality); they can verify the authorship of those messages (authenticity); even if their long-term secrets
leak, past communications remain confidential and authentic (perfect forward secrecy — PFS). In the
wake of Edward Snowden’s revelations of mass surveillance on civilian conversations, these properties
are particularly important.

People’s awareness of and desire for the privacy of their communications (leading, e.g., to the adoption
of applications advertizing privacy, like WhatsApp or Viber) is now stronger than ever. Commendable
regulations, such as the EU’s General Data Protection Regulation (GDPR?) or the new electronic privacy
regulation (ePR) have revolutionized today’s Web-browsing by limiting the personal data collected by
clients and giving users the right to remove information which may harm them.

Yet, at the opposite end, law-enforcement agencies and governments have, for years, been pushing for
less privacy in communications. We are often told this is in the name of (inter-)national security, pre-
venting horrific crimes, such as child abuse, terrorism, or organ trafficking. Thus, while law-enforcement
agencies advocate for privacy in communications, they also want “back doors”: ways to exceptionally
access data in order to prevent crime.

A recent, iconic case is that of FBI versus Apple®, in which the FBI demanded a back door allowing
them access to locked Apple phones. Apple refused, explaining that such back doors were unconstitu-
tional, and that the resulting unrestrained access would set a dangerous precedent.

3 See https://gdpr-info.eu/ for the full text.
* See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX\%3A52017PC0010.
5 See https://epic.org/amicus/crypto/apple for a summary of that debate.

Yet, even staunch defenders of privacy like Abelson et al. [1] agree that limited, well-regulated access
to data may be useful and acceptable (when e.g., used to prevent the heinous crimes cited above).
Whereas universal back doors do not discriminate between subpoenaed and un-subpoenaed sensitive
information, fine-grained, exceptional access to data can be viewed as constructive.

The generic notion of key-escrow captures just such a fine-grained back door that targets a (set of)
key(s). Despite extensive research, key-escrow has many limitations, due mostly to its wide-ranging appli-
cation scenarios. For instance, it may be hard to “oblige” Alice and Bob to use a particular channel (with
escrowed keys); moreover, many key-escrow protocols require parties that recover keys (the authorities)
to be always online.

At ESORICS 2021 Arfaoui et al. introduced Lawful Interception Key-Exchange protocols (LIKE) as
a way to provide punctual exceptional access to mobile conversations between users, while preserving
the privacy of all users and conversations not targeted by a subpoena [3]. This scenario, which naturally
obliges Alice and Bob to converse over a specific channel via their serving networks, also comes with
enforced security properties (non-frameability and honest operator) and does not require the authorities
to be online.

The LIKE protocol of [3] can work with multiple service providers, but not multiple sets of authorities.
In other words, in contrast to LI requirements during roaming, the scheme of [3] cannot guarantee LI
access in both Alice’s country and Bob’s country. This limits the use of that protocol to domestic
communications (featuring only one set of authorities) or to roaming scenarios for which one country
agrees to forego its right of LI in favour of another country. As a second disadvantage, the protocol of [3]
requires pairings, which require specialized implementation libraries which might not always be readily
available.

In this paper, we extend LIKE protocols to capture both domestic and roaming communications.
Although this opens exceptional access from one to two sets of authorities, we note that this is a legal
requirement of international communications. Our protocol, which is pairing-free and very fast, maximizes
privacy within the bounds of the law, guaranteeing the same, strong properties pioneered by [3], but with
respect to two independent set of authorities.

The LIKE setup. Precisely defined by law and 3GPP standards, Lawful interception (LI) is the process
by which exceptional access is given to a set of authorities, in possession of a warrant, to mobile data or
metadata pertaining to a user.

In current architectures, when two mobile-users Alice and Bob decide to communicate, the data they
share is forwarded by the operators serving the users. This allows operators to answer LI queries for
(meta-)data of users, when queried by an accepted set of authorities. Unfortunately, the operators learn
much more than just the data they forward, and are given access to enormous amounts of potentially-
sensitive data. This damages user privacy and makes operators a target to entities wanting access to that
data.

Arfaoui et al. present in [3] a pairing-based alternative to this approach, in which Alice and Bob
establish an end-to-end-secure channel that denies operators access to their data. Exceptional LI access
is guaranteed by bilinearity, since Alice and Bob “embed” the product of a number of authority keys
into the session key. During LI, each authority generates a trapdoor to the session key; by then using
bilinearity and the set of all the trapdoors, the authorities recover the key.

A clear downside of the protocol is Alice and Bob must embed the same set of authorities into the
session key, or compute distinct session keys. Thus, [3] leaves LI in the presence of two sets of authorities
as an open question.

Our protocol. We consider a LIKE setup in which Alice, currently in country A, is receiving mobile
service from operator Oa. Bob is in country B, receiving mobile service from another operator Og. When
Alice and Bob communicate over the mobile network, Op and Og forward their data, but (as in [3]) in
encrypted form. Unlike [3], we consider that Alice’s communication will be subject to a set of authorities
in country A, while Bob’s may be opened by a different set of authorities, in country B.

In our protocol, users Alice and Bob (essentially) use signed Diffie-Hellman to establish their secure
channel. The authority keys are no longer embedded in the session key; instead, the two endpoints enable
LI by encrypting the session key with a function of the authority keys (akin to ElGamal encryption),
providing the ciphertext and a proof of its well-formedness to the operators. The ciphertext and proof
are only received and verified by the operator providing service to that endpoint. Our protocol’s security
relies on standard assumptions: the hardness of the Decisional Diffie-Hellman problem, the unforgeability

of the signature scheme, and the security of simple proofs and signatures of knowledge. Our protocol is
also fast, as we show through a proof-of-concept implementation described in Section 5.

Other related work. Though closely related to [3], our work makes important original contributions:
we extend LIKE to handle two different sets of authorities (an open question in [3]), and provide a
provably-secure, pairing-free construction achieving it.

We provide stronger guarantees than typical key-escrow [19,12,4,23,21,6,10,17,15,16, 13,18, 22, 20,
11]. First, our chosen use-case (mobile communications) obliges participants to communicate via two
serving networks which can now vouchsafe for Alice’s and Bob’s protocol-compliance. Moreover, our
protocol can handle two independent sets of authorities simultaneously, one performing LI on Alice’s end,
and the other, on Bob’s. Finally we guarantee Arfaoui et al.’s strong properties: fine-grained, session-
based LI access; no central key-generation authority; no trust required in authorities; and finally, we do
not require those authorities to be online except at LI opening.

A parallel line of research to ours [7, 24] aims to make LI possible, but computationally very expensive.
Unfortunately, that approach contravenes the 3GPP requirement of a timely return of the subpoenaed
content. This timeliness requirement affects the operator directly, creating an incentive for it to only
adopt solutions that allow for speedy key-recovery.

2 Preliminaries

Notations. Throughout the paper, A € N will denote a security parameter. The notation x < y signifies

that a variable x is assigned a value y. We write x & A when z is sampled identically and uniformly at
random from the set A, and, for an algorithm Alg, the notation y < Alg(x) expresses the fact that, if
run on input z, Alg outputs y.

Definition 1 (Decisional Diffie-Hellman (DDH) assumption). Let (G,p,g) be a prime order
group. Then DDH holds when for any random tuple (xz,y,z) € (Z;)S, no probabilistic polynomial time
(PPT) adversary can distinguish between (g%, g¥,9%Y) and (g%, g¥, g*) with non-negligible probability in
pl-

Definition 2 (Digital signatures). A digital signature scheme DS is a triplet (SGen, SSig, SVer) such
that SGen takes in input 1* and outputs a pair (PK,SK), SSig takes in input a key SK and a message
m and outputs a signature o, and SVer takes as input a key PK, a message m, and a signature o and
outputs 1 if the signature is deemed valid, and 0 otherwise. A digital signature is existentially unforgeable
against chosen message attacks (EUF-CMA) if no PPT adversary interacting with a signing oracle is
able to forge a fresh and valid signature.

(Non-Interactive) Proof/Signatures of Knowledge [5,9] (NIPoK and SoK) allow a prover to convince
a verifier that it knows a witness to a particular statement, without revealing information about that
witness. In Sok, the prover embeds the message to sign in the proof. We use the Camenisch/Stadler
notation [8] to formalize both these primitives below.

Definition 3 (Signature/Proof of Knowledge). Let R be a binary relation and L be a language
such that s € L < (Fw,(s,w) € R). A SoK for L is a pair of algorithms (SoK,SoKver) such that
SoK,,, {w: (s,w) € R} outputs a signature m and SoKver(m, s, w) outputs 1 for acceptance, 0 otherwise.
The formal definition of NIPoK follows along similar lines — except NIPoKs do not require messages. In
addition, a Zero-Knowledge (ZK) proof/signature of knowledge allows no additional information about
the witness to leak.

3 LIKE protocols

Originally described by Arfaoui et al. [3], LIKE protocols are principally meant to allow two users Alice
(denoted A) and Bob (denoted B), whose mobile communication is forwarded by operators Oa (providing
mobile service to A) and Og (serving B), to establish a secure channel that can be exceptionally opened
by some authorities.

In the original setting of [3], at each connection Alice, Bob, and the operators must agree on the same
subset of authorities. While this might be realistic for domestic mobile communications, it is not so for
the case of roaming, in which Alice and her serving network are in a different country (thus affiliated to
different authorities) than Bob and his serving network. In this work we extend the work of Arfaoui et
al. to also cover roaming — an extension which will require small modifications to the primitive’s syntax
and security model.

Context and parties. Like [3], we consider a set of user USERS, a set of operators OPS, and a set of
authorities AUTH (the latter will include the set of all possible authorities, from all possible countries).
Anticipating our setup, note that each protocol session will take place in the presence of two subsets of
authorities, which might, or might not, have a non-void intersection.

The union USERSNOPSNAUTH is the set of parties. It is assumed that the user set is disjoint from
the union of the other two sets: in other words, a user can never be an authority or an operator. Just
like Arfaoui et al., we also assume that technically the operator and authority sets are disjoint. However,
note that in reality, an operator can in fact also play a part in exceptional opening — in that case, we
“split” the same moral identity into two separate ones which have knowledge of each other’s keys: one
entity plays the role of the operator, and the other, the role of the authority.

Protocol structure and intuition. Like [3] we envision LIKE protocols as a sequence of steps: setup,
key-generation, authenticated key-exchange, verification, and lawful interception (the latter step being
made up of two algorithms). During setup, we generate some common public parameters (such as the
description of a prime-order group). Then, each type of party (users, operators, and authorities) will use
its own key-generation algorithm to generate credentials. These first two steps are depicted in Figure 1,
and while we recall their syntax below, it is unchanged compared to [3].

1) Setup 2) Key Generation

pp
2 0 pp
Ay.PK, Ay
l @ 1 1 .PK,0,.S @U .PK,Uy. S
S

P o
@Az.mﬁs w y
%F _PK,0,.5 8” -PK,Uz. S
P S
Ag.PK,A3.S =
P

Fig. 1. The Setup and Key-Generation steps, for two users, two operators, and three authorities

Once parameters are generated, two users and their respective serving networks engage in an au-
thenticated key-exchange protocol (as depicted in Figure 2), requiring Alice and her serving operator to
agree on one subset of authorities, while Bob and his operator must agree on a (possibly distinct) set
of authorities. This is reflected in a slight modification of the syntax of our authenticated key-exchange
algorithm below.

APK; = {A;. PK, A;. PK, Ay PK}

Uy. PK, 0,.PK,
U;.SK S 0.5k

APK, = {A4. PK, As. PK}

EP 0,.PK, U,.PK,
S 0,.5¢ U,.SK

/@ ssty sst, %

Fig. 2. Authenticated key-exchange. The two left parties agree on a subset of authorities (3 in this example),
while the two right parties agree on a different set of two authorities. The operators compute a session state,
while the parties compute a session key.

During authenticated key-exchange, the two endpoints compute a session key, while the operators
verify the fact that the transcript is protocol compliant, and finally each output a session state. The

syntax of [3] is permissive, allowing the two session states, corresponding to the two operator outputs in
a single session, to differ. In the case of roaming (for two different sets of authorities), those states will
always differ, since they include the authority public-key sets.

Each session state is publicly verifiable with respect to the validity of the transcript and the identities
of both the participants that generated it, and the authorities that were considered. Once more, the
syntax of [3] can remain unchanged, although in practice we must verify the session state output by Op
with respect to the authority set considered by A and her operator, while the session state output by Og
is verified with respect to the authority set considered by B and his operator.

The final step is lawful interception, which consists of two algorithms. Using the session state output
by one of the operators, the authorities with respect to which that session state was established will first
generate some trapdoors. Using all the trapdoors in input, the opening algorithm will then yield the
session key established by Alice and Bob (as depicted in Figure 3).

Notations. In both the formalization below and the model, we use dot notations to separate specific
attributes of a party from the party owning it. For instance A.PK denotes Alice’s public key, and A;.SK
is the secret key of the i-th authority. The two operators are denoted Oa and Og because they provide
service to Alice and Bob respectively®. Parties A and Oa agree to run the protocol in the presence of
a subset of na authorities, while parties B and O agree to run it in the presence of a possibly different
subset of ng authorities. We note that the choice of authorities is thus limited to one of the two sides of
the protocol.

Extending the LIKE definition. The only extension we make to the already-existing LIKE syntax of [3]
is to provide for two sets of authorities in the AKE protocol. The new formal syntax of this algorithm is
as follows:

- AKE<A(ASK)7 OA(O/_\SK), OB(OBSK), B(BSK»(PK/_\HB) — (kA, ssta, sstg, kB)Z An authenticated key-
exchange protocol between users (A, B) € USERS? and operators (Oa,0pB) € OPS?. The parties each
take as input a secret key, and have access to the same set of public values PKa_pg containing:
parameters pp, public keys (A.PK,B.PK), and two distinct vectors of authority public keys
(APKa,APKg) = ((A2.PK)™_, (AB.PK)™,) with A% € AUTH for all i € [1,n] and A® € AUTH for
all ¢ € [1,m]. Note that we place no restrictions on whether or not the same public key exists in
both vectors. We also note that, while the syntax seems to require Alice to know the keys of the
authorities on Bob’s side, this is not really necessary for our protocol (Alice will never need those).
In that sense, the use of a universal set PKa_,g is only for convenience and legibility. At the end of
the protocol, A (resp. B) returns a session secret key ka (resp. kg) and the operator Op (resp. Og)
returns a (public) session state ssta (resp. sstg). In case of failure, the parties output a special symbol
L instead.

We make no modification to the remaining algorithms in the original framework of Arfaoui et al. [3].
However, for completeness, we recall them here.

- Setup(l/\) — pp: Generates public system parameters pp.

— UKeyGen(pp) — (U.PK, U.SK): Used by mobile users to generate a public/private user key pair.

— OKeyGen(pp) — (0.PK, 0.SK): Used by operators to generate a public/private operator key pair.

— AKeyGen(pp) — (A.PK, A.SK): Used by authorities (irrespective of country) to generate a pub-
lic/private authority key pair. Note that, although we place no restrictions on the subsets of author-
ities used, they must use the same public system parameters (at least, the same per AKE session),
regardless of their country in order to allow the protocol to work.

— Verify(pp, sst, A.PK, B.PK, O.PK, APK) — b: Verifies if an input session state sst, is consistent with a
session having been correctly run and authenticated by input operator O between users A and B for
a set of authorities APK. If the verification succeeds the algorithm outputs 1.

— TDGen(pp, A.SK,sst) — A.td: Generates a trapdoor A.td for a session state sst, using authority secret
key A.SK.

— Open(pp, sst, APK, T) — k: Recovers a purported key for session with state sst, given authority public
keys APK = (A4;.PK)™_; and trapdoors T = (A;.td)"_;. If no key can be recovered, the output is L.

5 Note that this does not necessarily mean that Alice and Bob subscribe to those two particular operators.

APK; = {Ay. PK, A, PK, Ay. PK}

04.PK,
S 0,.5K

Ssty —>

1 |

Fig. 3. Lawful interception on Alice’s side of the conversation. Note that, to recover the key, all the authorities
stipulated during key-exchange must generate and use their trapdoors.

4 Our protocol

For our scheme, we assume that both the operators and the users employ a digital signature scheme
DS = (SGen, SSig, SVer) — namely, their long-term credentials will be used for signing messages. We will
require two types of zero-knowledge proofs of knowledge:

— DLog: The first type of ZK NIPoK we require is a proof of knowledge of a discrete logarithm. We
use this to prove that the authorities generated their long-term keys correctly; this is crucial in order
to guarantee that exceptional opening occurs only when all the authorities in the session state’s
authority vector cooperate. We thus actively fine-grain lawful interception and prevent easy mass
surveillance.

— Equal exponent: The second type of ZK NIPoK we need is a proof of equality of discrete logarithms.
We use this in the trapdoor-generation algorithm, for which authorities need to prove that their
trapdoors were generated using the same exponent as was used in their long-term credentials. This
prevents malicious authority behaviour which might yield a different session key when opening than
the key computed by Alice and Bob.

The signature of knowledge will also prove a knowledge of equal exponents, which assures the operator
that Alice’s and Bob’s messages will allow the authorities to recover the key yielded by that protocol
session. Note that in our protocol Alice’s operator will check protocol compliance with respect to the set
of authorities in Alice’s country, and Bob’s operator will check compliance with respect to the authorities
in Bob’s country.

In the following, we detail our protocol in terms of the syntax presented in the previous section.

Setup and Key Generation. As opposed to the protocol of Arfaoui et al. [3], we do not require
pairings. During setup we just fix the description of a group G of prime order p with some generator g.
Both users and operators use the key-generation algorithm of the signature scheme in order to generate
their credentials, whereas authorities generate an exponent in Z; as their secret key, publish the public
key corresponding to that exponent, and prove in zero-knowledge that the keys are well-formed.

— Setup(1*): Based on)\, choose G a group of prime order p, a generator of g of G, and output

pp = (A, G, p, 9).
— UKeyGen(pp): Run (U.PK, U.SK) + SGen(1*) and return (U.PK, U.SK).
— OKeyGen(pp): Run (0O.PK,0.SK) < SGen(1*) and return (O.PK, O.SK).
(

— AKeyGen(pp): Pick A.SK & Zy, compute A.pk g3 and A.ni «+ NIPoK {A.SK : Apk = gA'SK},
set A.PK < (A.pk, A.ni). Return (A.PK, A.SK).

Authenticated key-exchange. The protocol AKE is instantiated as described in Figure 4.

This protocol presents a crucial difference in the key-computation compared to [3]. Beyond being
pairing-free, our scheme no longer embeds the authorities into the session key, thus allowing two distinct
sets of authorities to open it.

As described in Figure 4, we require everyone to be sure, when using a particular authority public
key, that it was generated according to protocol. This is why we have a precomputation phase in which
the users and operators check the public keys of the authorities they are about to use. However, we note

that this precomputation phase can be reused across sessions: once verified, a public key need never be
verified again.

During the same precomputation phase, A and Oa multiply the public keys of the involved authorities,
thus obtaining an auxiliary value ha (and respectively hg).

Our protocol relies on signed Diffie-Hellman, with the key being X¥ = Y* = g*¥, within the group
G. However, we also embed some elements into the protocol, which will later enable authorities on both
sides to recover trapdoors to the AKE session. These additional elements are only exchanged between
the user and its serving network; once they are verified, they are added by the operator to the session
state, but not forwarded to the other operator. This is why the transcript of the protocol between Op
and Og is that of the signed Diffie-Hellman protocol, while the one between A and Oa (and B and Og
respectively) contains additional elements.

In order to allow the authorities in APKa to recover the key, user A “encrypts” the session key (Y'*)
with h%, obtaining a ciphertext Ha. Looking ahead, in order to “neutralize” ha and recover the key we
require the contributions of all the parties whose public keys are in ha. Bob will do the same on his side,
but for the authorities in APKg and respectively for hg; the ciphertext obtained is Hg.

Note that successful session opening depends on the well-formedness of the ciphertexts Ha and Hpg.
In order to prevent the users from cheating, we require them to provide a signature of knowledge on a
message consisting of the identities of Alice, Bob, and the authorities, proving in zero-knowledge that
they have used the same exponent in computing their H value and for their Diffie-Hellman key-share.

Alice: A(A.SK) ‘ Alice’s operator: Oa(Oa.SK) ‘ ‘ Bob’s operator: Og(0g.SK) ‘ Bob: B(B.SK)
Precomputation phase (reusable across some sessions)
precomputation of A and Oa: parse APK, as (A?.pk,/l?.ni):"zl; precomputation of B and Og: parse APKg as (A?.pk, A?.ni)?;l;
n m
check all A%.ni; wa < A||B|[(AN)I 5 ha 1‘[l AR ks check all AP.ni; wg + A||B|[(AS)™ 5 hg 1‘[l A8 pks
i= i=
AKE session (reusing the authority data above)
z&Z;;X%g“; R, SN . SN . SN y&Z;;YHgy;

Hg « (hg - X)Y;
58— (Y = g¥ A Hg = (hg - X));
nig < SoKp {y:ss};

| Y08 | Y,o8 L Y,o8, Hg nig | .
Verify og; — Verify og; — Verify og, nig; — og <+ SSig(B.SK, A||B|| X||Y);
Hp (ha - Y)";
sa < (X =g" AHa = (ha-Y)");
nia < SoK.,, {x:sa};
A — X||Y[log
. X oA Hponia " . A . R IA . K
oa < SSig(A.SK, A||B||7a); ST Verify oa, nia; e Verify oa; e Verify oa;
2 . 52
Verify o2; B Verify o2, nig; B Let 78 + X||Y||og||oa;
DH « (X|Y); DH « (X|Y); o « SSig(B.SK, A||B||78);
SIG + ogloalloz; SIG « ogloallo?;
ta <= (0f|lwa [[DH|SIG|| Ha|[nia); tg < (1]|ws [|DH|SIG|| Hg | nig);
Return ka < Y*; 00, + SSig(Oa.SK, ta); oog + SSig(0s.SK, tg); Return kg + XY;
ssta < (talloo,); sstg < (tglloog);
Return ssta; Return sstg;

Fig. 4. The authenticated key-exchange step of our protocol AKE(A(A.SK), Oa(Oa.SK), Og(0Og.SK), B(B.SK))(
PKA%B)

Notice that at no point in the execution of the protocol does Alice need to know the identities or public
keys of Bob’s authorities, nor vice-versa. This is a crucial feature of the protocol, which is essential in
real life, since often the authorities in one country do not (and sometimes should not) know the identities
of the relevant LI authorities in another country.

Verification. We note that verification is unilateral, in the sense that either we verify the session state
on Alice’s side of the conversation with respect to the identities of the participants and the authorities
on her side, or we do the same on Bob’s side, with respect to the authorities and session state on his
side.
— Verify(pp, sst, A.PK, B.PK, O.PK, APK) — b: Parse APK as a set (4;.PK)?_; and parse each 4;.PK as
n
(A;.pk, A;.ni), set w < A||B||(A;)7; and h <+ [] A;.pk. Parse sst as d||'|| X||Y||oglloallca| H]nilloo
i=1
and set Zp = X and Z; =Y. If oa, 0,03, and 0o are valid signatures, ni and A;.ni for all i € [1,n]
are valid signatures/proofs of knowledge, and w = w’, then the algorithm returns 1, else it returns 0.

Lawful interception. Lawful interception consists of two stages. First, in an individual effort, each
authority computes a trapdoor to the session key. Then, during opening, the trapdoors must be combined
to retrieve the session key from the ciphertext provided by the endpoint users (either Ha or Hg, as the
case may be).

For Alice’s side, each authority computes as a first element of the trapdoor the group element
(where X is Alice’s key-exchange element). The second element of the trapdoor is a proof of well-
formedness from the part of the authority, namely demonstrating that the same private key was used to
compute both the authority’s long-term public key and the authority’s first trapdoor element. The same
is true for Bob, except that the authorities will compute Y 45K,

The opening procedure begins with a verification of both the validity of the session state with respect
to the expected participants and authorities, and soundness of the handshake, and a verification of the
well-formedness of all the trapdoors used in input to the opening algorithm. On Alice’s side, the session
key is obtained from the ciphertext Ha, by dividing it by the product of the trapdoors obtained by all
the authorities agreed upon by Alice and Oa. On Bob’s side, the procedure is identical, using Hg and
the authorities on Bob’s side.

— TDGen(pp, A.SK,sst): Parse sst as (d||w'|| X||Y||oglloalloa|[H||nillco) and set Zy «+ X, Z; «+ Y,

Atdy « Z25K Atdy < NIPoK {A.SK D APK = gASK A Atdy = ZdA-SK} and A.td + (A.tdp, A.tdy),

and returns A.td.

— Open(pp, sst, APK, T): Parse T as (A;.td)™_,, sst as d||’|| X||Y ||log||oalloa]| H]nilloo, set Zy = X and
Z1 =Y, parse APK as (A;.pk)!_,, parse each A;.PK as (A;.pk, A;.ni), each A;.td as (A;.tdy, 4;.td3) and
verify that NIPoKver((g, A;.pk, Z4, A;.td1), A;.tda) = 1; if any verification fails, the Open algorithm
returns L. Compute and return k < W

XA.SK

Once more we draw the reader’s attention to the fact that the opening procedure only requires the
trapdoors of the set of authorities stipulated in the given session state. In other words, if Oa outputs a
session state ssta that is then used for the lawful interception steps, then the opening does not require
the contribution of the authorities on Bob’s side of the conversation.

The flexibility of our approach. We return here to some of the desirable features of LIKE schemes
that we mentioned in Section 1. We have already discussed one of them: the complete independence of
the LI processes on either side of the communication: Alice and her operator need know nothing about
the lawful-interception process (including the names or public keys of the authorities) on Bob’s side of
the communication. There is also no cardinality requirement on the sizes of the two authority subsets:
in other words, Alice’s communication might be subject to more authorities than Bob’s. We also note
that Alice and her operator are never involved by the authorities on Bob’s side, should Bob’s side of
the communication be subject to LI requirements (nor vice-versa). These properties are all novel to our
scheme, making it much more useful (and realistic) in practice than previous work.

Our scheme also benefits from the flexibility of Arfaoui et al.’s protocol. The separation of the party
set into disjoint sets (authorities, operators, and users) is not as restrictive as it appears. This separation
is more about cryptographic data and ownership of keys. Thus, if in a given country an operator is, in
fact, an authority, then two sets of keys are generated, and the operator uses its operator keys while
functioning as an operator, and its authority keys for LI queries. If only some of the authorities need
to recover the secret, then those authorities can create a secure channel and use that to publish their
trapdoors (while the remaining authorities, who need not recover the secret, can just publish it outside
that secure channel).

5 Implementation results

We implement a prototype of our protocol and the protocol of Arfaoui et al. [3] using the Charm-Crypto
framework [2]; our code is available at [14]. Since [3] requires pairings, we need to use a pairing-friendly
curve for the initial comparison — in our case, MNT159 with 159-bit base field from the PBC library, which
ensures a security level of 80 bits and has fairly-fast pairing computations. However, our protocol does
not, in fact, require pairings; thus, we can also run our protocol using the NIST/X9.62/SECG curve over
a 192 bit prime field prime192v — for which our protocol gains a significant performance leap. We note
that by using the second curve, we gain in security, as well as efficiency.

We use Schnorr-like protocols and signatures to instantiate the zero-knowledge proofs of knowledge,
the signatures of knowledge, and the signature schemes. We run our script on Ubuntu 18.04.4 LTS (64
bits) using an Intel Core i15-8365U CPU @ 1.60GHzX8 processor.

In Figure 5 we summarize our implementation results, comparing the protocol of Arfaoui et al. [3]
and our protocol. We evaluate the computation cost of the precomputation phase, the key-exchange
protocol for one entity (Alice, Bob or an operator), the active phase of the key exchange protocol (where
the protocol steps are executed sequentially), the verification of sst, the trapdoor generation, and the
extraction of the key. The first part of the table in Fig. 5 evaluates the number of exponentiations in
the prime order groups and, optionally, the number of pairing-computations, which are the most costly
operations of the protocols. Note that pairings are, in general, much less efficient than exponentations.

The second part of the table in Fig. 5 evaluates the execution time of the two protocols (for n = 3
authorities)”. We evaluate the performance of our protocol for the same setting as for Arfaoui et al. [3]
(MNT159), and then showcase its true potential by using the more appropriate prime192v curve. The lack
of pairings provides an evident advantage in the prime192v setting, but is even present on MNT159 curves:
indeed, on MNT159 the pairing takes input of the type (g, h) from Gy x Gs, and computations are much
faster in G; than in Go. For the protocol of Arfaoui et al. we are obliged to perform exponentiations
in both G; and Gs on MNT159; however, for our scheme we can just use G; and its more efficient
exponentiations throughout the protocol. The difference in performance between the two protocols is
therefore more significant than expected from the theoretical analysis.

Protocol PrecomputationKey exchange| Verification [Trapdoor gen.| Extraction

Arfaoui et. al. [3] 2n)E 10E + 8P |(2n+12)E + 2P| 3E+1P |@dn)E + 1P|
Our protocol (2n)E 39E (2n+12)FE 3E (4n)E
Arfaoui et al. [3] (MNT159) 2.39ms 115.50ms 35.41ms 4.35ms 9.06ms
Our protocol (MNT159) 2.31ms 15.41ms 6.90ms 1.17ms 4.57ms
Our protocol (primel92v1) 1.53ms 10.85ms 4.76ms 0.78ms 2.99ms

Fig. 5. Theoretical and implementation results for our protocol vs. that of Arfaoui et al.. Theoretical results
depend on the number of authorities (n), the number of exponentiations in a prime order group (E), and the
number of pairing computations (P). Implementation results are averaged over 100 executions, for 3 authorities,
using the settings MNT159 and primel192v.

The pre-computation, verification, and key-extraction steps depend on the number of authorities. In
Figure 5, we fixed those numbers (to n for the theoretical analysis and for 3 for the implementation
analysis). In Figure 6, we evaluate the performance of these algorithms as a function of the number
of authorities (ranging from 2 to 15), highlighting the linear complexity of these algorithms and the
significantly-increased efficiency of our approach.

The graph in Figure 6 clearly shows that the Arfaoui et al. remains the least efficient one of the three
(the top curve in each of the graphs). The gap between the scheme in [3] and our protocol in the MNT159
setting shows the advantage of not using pairings (the green curve is much lower than the red curve for
the verification and extraction algorithms respectively). The vertical between the two curves is much
more significant in the case of verification (for which we require two pairings and several operations in
G in [3]) than for extraction (one pairing only). In the case of the precomputation algorithm, neither
pairings nor operations in Gy are needed for [3] and therefore the two curves are very close.

The primel192v setting is even more advantageous to our protocol, since the exponentiations are
much faster, and in addition, we require no pairings. This is depicted in Figure 6, in the bottom curve
(the blue one), which not only starts out being faster, but shows a much less-steep linear progression as
n increases.

7 We note that the protocol of [3] only works for a single set of authorities on both sides (Alice’s a Bob’s sides,
respectively). In our protocol, Alice’s side could be opened by a different set of authorities than Bob’s side. To
make the comparison fair with respect to [3], we fix the number of authorities for the Arfaoui et al. protocol [3]
to 3, and assume for our protocol that either Alice’s or Bob’s side features 3 authorities, and that this is the
side that opens the protocol.

Fig. 6. Average execution time (in milliseconds, for 100 executions) of the precomputation (left), verification
(middle), and extraction (right) algorithms respectively, as a function of the number of authorities. For each
algorithm, we plot the graph for Arfaoui et al. [3] in the MNT159 setting (red) and for our protocol using the
settings MNT159 (green) and prime192v (blue).

To conclude, our evaluation shows that our protocol not only improves the functionality of LIKE pro-
tocols to allow them to function in two distinct countries, but also substantially improves its effectiveness
in both theory and practice.

6 Security Analysis

Our protocol guarantees the following properties, formalized by Arfaoui et al. for domestic mobile com-
munications [3]:

— Key-Security (KS): The key computed by Alice and Bob is indistinguishable from random to
anyone but Alice and Bob, as long as at least one of the authorities on Alice’s side, and one of the
authorities on Bob’s side of the communication disagree with Lawful Interception.

— Non-Frameability (NF): If a user has not taken part in a particular protocol session, no one can
accuse that user of having done so.

— Honest Operator (HO): If an operator has allowed a protocol session to run to completion, it is
guaranteed that the key retrieved by lawful interception by the authorities used by the operator will
yield the key extracted from Alice’s and Bob’s session state, i.e., the key Alice and Bob themselves
should have computed.

The notions our protocol achieve are slightly different than those guaranteed by the scheme of Arfaoui
et al., since we need to adapt the definitions to having two sets of authorities. We try to keep the
modifications at a minimum. Due to page limitations, we leave the precise formalization, our proof of
completeness, and our security proofs to a full version of our paper, published anonymously at [14].

7 Conclusion and future work

In this paper, we described a provably-secure, pairing-free protocol that allows Alice and Bob to commu-
nicate securely over a mobile network, without either of their serving networks learning the contents of
their exchanges. In accordance with mobile standards, we allow limited, fine-grained exceptional access
to the data to a group of authorities.

The main contribution of our work is that it can provide those strong properties even in the case
of roaming, when Alice’s communication is susceptible to being opened by a different set of authorities
than Bob’s. A second virtue of our scheme is that it is pairing-free, much more efficient and scalable in
the number of authorities compared to prior work, and its security relies on standard assumptions.

An interesting avenue for future work is investigating how this protocol could compose with current
protocols used in mobile network (such as AKA).

References

1. Harold Abelson, Ross Anderson, Steven M. Bellovin, Josh Benaloh, Matt Blaze, Whitfield ”Whit” Diffie,
John Gilmore, Matthew Green, Susan Landau, Peter G. Neumann, Ronald L. Rivest, Jeffrey 1. Schiller,

10

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

Bruce Schneier, Michael A. Specter, and Daniel J. Weitzner. Keys under doormats. Communications of the
ACM, 58(10), 2015.

Joseph Akinyele, Christina Garman, Ian Miers, Matthew Pagano, Michael Rushanan, Matthew Green, and
Aviel Rubin. Charm: A framework for rapidly prototyping cryptosystems. Journal of Cryptographic Engi-
neering, 2013.

Ghada Arfaoui, Olivier Blazy, Xavier Bultel, Pierre-Alain Fouque, Thibaut Jacques, Adina Nedelcu, and
Cristina Onete. How to (legally) keep secrets from mobile operators. In Proceedings of ESORICS, LNCS.
Springer, 2021.

. Abdullah Azfar. Implementation and Performance of Threshold Cryptography for Multiple Escrow Agents

in VoIP. In Proceedings of SPIT/IPC, pages 143-150, 2011.

Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell, editor, Advances
in Cryptology - CRYPTO 92, 12th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages 390—-420.
Springer, 1992.

Mihir Bellare and Shafi Goldwasser. Verifiable Partial Key Escrow. In CCS ’97. ACM, 1997.

Mihir Bellare and Ronald L. Rivest. Translucent Cryptography - An Alternative to Key Escrow, and Its
Implementation via Fractional Oblivious Transfer. J. Cryptology, 12(2), 1999.

Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups (extended abstract).
In Burton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO 97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture Notes
in Computer Science, pages 410-424. Springer, 1997.

Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia Dwork, editor, Advances in
Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings, volume 4117 of Lecture Notes in Computer Science, pages 78-96.
Springer, 2006.

Liqun Chen, Dieter Gollmann, and Chris J. Mitchell. Key escrow in mutually mistrusting domains. In
Proceedings of Security Protocols, pages 139-153, 1996.

M. Chen. Escrowable identity-based authenticated key agreement in the standard model. In Chinese Elec-
tronics Journal, volume 43, pages 1954-1962, 10 2015.

Dorothy E. Denning and Dennis K. Branstad. A taxonomy for key escrow encryption systems. Commun.
ACM, 39(3), 1996.

Qiang Fan, Mingjian Zhang, and Yue Zhang. Key Escrow Scheme with the Cooperation Mechanism of
Multiple Escrow Agents. 2012.

Anonymized for submission. Full version and code for our paper. https://github.com/pairingfreelike/
pairingfreelike, 2021.

Yu Long, Zhenfu Cao, and Kefei Chen. A dynamic threshold commercial key escrow scheme based on conic.
Appl. Math. Comput., 171(2):972-982, 2005.

Yu Long, Kefei Chen, and Shengli Liu. Adaptive Chosen Ciphertext Secure Threshold Key Escrow Scheme
from Pairing. Informatica, Lith. Acad. Sci., 17(4):519-534, 2006.

Keith M. Martin. Increasing Efficiency of International Key Escrow in Mutually Mistrusting Domains. In
Cryptography and Coding, volume 1355 of LNCS, pages 221-232. Springer, 1997.

Silvio Micali. Fair Public-Key Cryptosystems. In CRYPTO ’92, volume 740 of LNCS. Springer, 1992.
Crypto Museum. Clipper chip. Available at https://www.cryptomuseum.com/crypto/usa/clipper.htm.
Liang Ni, Gongliang Chen, and Jianhua Li. Escrowable identity-based authenticated key agreement protocol
with strong security. Comput. Math. Appl., 65(9):1339-1349, 2013.

Adi Shamir. Partial key escrow: A new approach to software key escrow. Presented at Key Escrow Conference,
1995.

Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In CRYPTO, pages 47-53, 1984.

Zhen Wang, Zhaofeng Ma, Shoushan Luo, and Hongmin Gao. Key escrow protocol based on a tripartite
authenticated key agreement and threshold cryptography. IEEE Access, 7:149080-149096, 2019.

Charles V. Wright and Mayank Varia. Crypto crumple zones: Enabling limited access without mass surveil-
lance. In Proceedings of EuroS&P 2018. IEEE, 2018.

11

A Preliminaries

A.1 Notations

Let A € N be a security parameter. We denote by x <— y the fact that a variable x is assigned a value y.

We write = ¢~ A to indicate that z is sampled identically and uniformly at random from the set A, and,
for an algorithm Alg, the notation y + Alg(z) expresses the fact that, if run on input z, Alg outputs y.
Many of our algorithms are probabilistic polynomial time in the (implicit) security parameter A, a
fact we denote by “PPT”.
Our LIKE construction in Section 4 will require the use of digital signatures, and proofs and signatures
of knowledge. Its security relies mainly on the hardness of the Decisional Diffie-Hellman problem (DDH).
We review the DDH assumption and our building blocks in this section.

A.2 Assumptions and building blocks

Definition 4 (Decisional Diffie-Hellman problem). Let (G,p,g) be a prime order group. Then the
decisional Diffie-Hellman problem is hard if, for all PPT adversaries A, AdvDDH()\) is negligible in \:

_ pr[(@) & (Z;)% ;b:ll
b A(g”,9Y,9"")

$
_pr | @ye2) S (Z0)%
<—«4(g””7g, 9°);

T%

We denote by AdvDDH()\) the mazimum advantage a PPT adversary can have to solve this problem (note
that if DDH is hard, then AdvDDH(/\) will be negligible as a function of the security parameter).

Definition 5 (Digital signatures). A digital signature scheme DS is a triplet of algorithms (SGen,
SSig, SVer). The randomized key-generation SGen takes in input 1* and outputs a public/secret key pair
(PK,SK). On input SK and a message m, the randomized signing algorithm SSig outputs a signature o.
The deterministic verification algorithm SVer takes as input the public key PK, the message m, and the
signature o, outputting 1 if the signature is deemed valid, and 0 otherwise. For all (SK, PK) < SGen and
m, we assume that 1 <— SVer(PK, m,SSig(SK, m)) (the signature scheme has perfect correctness).

Let DS = (SGen, SSig, SVer) be a digital signature scheme. Let Sig be an oracle which, given in
input the message m, internally runs SSig(SK, m) to output a valid signature for m. The Existential
Unforgeability against Chosen Message Attacks property is defined by means of the following experiment,
where A is a PPT adversary with access to Sig:

Expps’ “"*(A):

(PK,SK) « SGen(lA)

(m, 0) + A% (PK)

Return 1 if (m, o) not output by Sig(-) and SVer(PK, m,o) =1,

0 otherwise.

Definition 6 (EUF-CMA). A digital signature DS is existentially unforgeable against chosen message
attacks if, for all PPT adversaries, AdvEgFACMA()\) is negligible in X,

AdVBLTMAN) = Pr [ExpBLTMA () =1]
We denote by AdvEUF CMA()\) the mazimum advantage obtainable by a PPT adversary A.

Signatures of Knowledge. For our construction we require two somewhat-similar primitives: non-
interactive zero-knowledge proofs of knowledge [5], and signatures of knowledge [9]. The former of these
allows a prover to convince a verifier that it knows a witness to a particular statement, without revealing
information about that witness. Signatures of knowledge allow a signer to bind knowledge of a witness
to a statement, and a message, proving that the possessor of a valid witness to a specific statement

12

has signed a particular message m. We use the Camenisch/Stadler notation [8] to formalize both these
primitives below.

We consider a setup in which R is a binary relation, and £ is a language such that s € £ <
(Fw, (s,w) € R). We call s a statement, while w is called a witness. A Non-Interactive Proof of Knowledge
(NIPoK) allows a prover to convince a verifier (in possession of s) that it knows a witness w such that
(s,w) € R. In addition, a Zero-Knowledge (ZK) proof of knowledge allows no additional information
about the witness to leak. We denote by NIPoK{w : (w,s) € R} a proof of knowledge of w for the
statement s, given the relation R.

In signatures of knowledge, signers use their witnesses w as private keys, while statements s become
public keys. When signing, the user proves its knowledge of w, using the message m as a label to sign it.
Signatures of knowledge are verifiable by any party in possession of the statement s. Such a signature is
strongly unforgeable because the signer requires the perfect knowledge of the secret key w.

Definition 7 (Signature of Knowledge). Let R be a binary relation and L be a language such that
s € L (w,(s,w) € R). A Signature of Knowledge for £ is a pair of algorithms (SoK,SoKver) such
that:

SoK,, {w : (s,w) € R}: outputs a signature .
SoKver(m, s, m): outputs a bit b.

A signature of knowledge has the following properties:

— Completeness: For any statement/witness pair (s,w) € R and message m, SoKver(m, s, SoK,, {w : (s,w) € R}) =
1.
— Perfect Zero Knowledge: There exists a polynomial-time algorithm Sim called the simulator, such
that Sim(m, s) and SoK,, {w : (s,w) € R} follow the same probability distribution.
— Knowledge Extractor: There exists a polynomial-time knowledge extractor Ext and a negligible func-
tion esok such that, for any algorithm AS™C)(X\) that outputs a fresh statement/ signature/ message
tuple (s, m,m) with SoKver(m, s,) = 1, such that A has access to a simulator that forges signatures
for chosen statement/message pairs, the extractor Ext’A()\) outputs w such that (s,w) € R having
access to A(X) with probability at least 1 — esok (A).

The definition of non-interactive zero-knowledge proofs of knowledge follows along similar lines —
except NIPoKs do not require/use messages.

A.3 Security model

The execution environment. We consider an environment in which the adversary will be able to
interact with honest parties via oracles. Each property is formalized in terms of a security game, played
by the adversary against a challenger, which manipulates the honest parties.

Each party is associated with a tuple (SK, PK), namely its long-term private and public keys (these
keys are generated, depending on the type of party, by one of the UKeyGen, OKeyGen, or AKeyGen
algorithms). Each party is also associated with a corruption flag -, which is raised if the adversary
queries the corruption oracle.

The users and operators run the authenticated key-exchange protocol in sessions. At each session,
each of the four parties generates a new instance of itself. We quantify instances collectively, denoting
by 7} the i-th instance generated during the experiment, where P denotes the corresponding party.

Each instance stores a number of attributes, basically storing important information related to the
session in which it took part, namely:

— sid: a session identifier, including a number of session-specific values that are hopefully unique to a
session. User instances running the same session should have the same session identifier.

— PID: the identifiers of all the other users (i.e., , parties in the set USERS) running the same session
as the given instance.

— OID: the identifiers of all the other operators running the same session as the given instance.

— AID: the identifiers of all the authorities included by that instance in the given session. Note that,
unlike for the protocol of Arfaoui et al., in our scheme an instance of Alice might have a different
authority partner-set than the matching instance of Bob.

13

a: a flag that is raised upon a successful termination of the protocol run.
k: the session key, which is an attribute specific only to users, and not to operators.
— sst: the session state: a set of values included in the instance’s view of the session. This is an attribute
specific only to operator instances.
— p: a reveal bit, specific only to users and set to 1 if the adversary queries the Reveal oracle on the
instance’s session key.
b: a bit chosen uniformly at random upon the creation of the instance.
— 7: the transcript of the session.

For our security games, we will need to establish a correlation between session states and instances
(rather than just between session states and parties, as is done in the verification algorithm). We adopt
the same approach as Arfaoui et al. and require the existence of an auxiliary function ldentifySession(sst,
m), which evaluates to 1 if the given instance has run a session with state sst and 0 otherwise.

A first modification: matching conversation. We need to redefine the concept of matching instances
with respect to [3], because in our case, they no longer have the same authority partner sets.

Definition 8 (Matching instances). For any (i,j) € N? and (A,B) € USERS® such that A # B,
we say that w4 and w5 have matching conversation if all the following conditions hold: 7j.sid # L and
W;.Sid = m.sid. If two instances T4 and % have matching conversation, we say that wy matches 3.

Oracles. In the security games, the adversary will be able to query some or all of the oracles below
(whose formal definition appears already in [3]).

— Register(P, role, PK) — L UP.PK: Creates a new party, adding it to one of the sets USERS, OPS, or
AUTH, depending on the value of role (which can be user,authority, or authority. Credentials
are also created, by using the appropriate Key Generation algorithm.

— NewSession(P, PID, OID, AID) — m: Creates a new party or operator instance, with user partner set
PID, operator partner set OID, and authority partner set AlD.

— Send(mb, m)— m’: Sends a message m to instance 1) and returns m’ according to protocol.

— Reveal(r})— k: Returns the session key (resp. the session state) if the input instance is an accepting
user (resp. operator) instance, and sets that instance’s reveal bit to 1.

— Corrupt(P)— P.SK: Returns a party’s long-term secret key and sets that party’s corruption bit to 1:
Py=1.

— Test(w,i;) — k: This oracle can only be queried once. If the input instance belongs to a user, then,
depending on the value of that instance’s test bit, this oracle returns either the real key (for m5.b = 0)
or a random key from the same domain otherwise.

— Reveal TD(sst, A, B, O, (4;)"_,,1) — A;.td: This oracle will reveal the trapdoor that the I-th authority
in the input set of authorities would have output for a session sst if, and only if, the parameters input
to this oracle verify for sst (in terms of the algorithm Verify).

Second modification: key-freshness. The notion of key-freshness is fundamental in typical Bellare-
Rogaway models of secure authenticated key-exchange. It captures the limitations of the security guar-
antee that can be proved for the protocol, eliminating “trivial attacks”, i.e., simple attacks that the
adversary can use to trivially break security. Ideally, the trivial attacks describe ways in which the pro-
tocol is meant to function: for instance even in a secure AKE protocol the two endpoints must know the
session key.

The LIKE scenario defined by Arfaoui et al. is meant to function in a setting where only one set
of authorities can exceptionally open a session key. In our case, that definition expands to two sets of
authorities (the authorities on Alice’s side, and those on Bob’s side).

Informally, the key-freshness conditions in [3] state that the session key may only be compromised
by: Alice, Bob, and the union of all the authorities for which the AKE session was run®. In other words,
if Alice, Bob, and at least one authority remain honest and uncorrupted, then the session key is secure.

In our new definition, keys may only be compromised by: Alice, Bob, the union of all the authorities
on Alice’s side or the union of all the authorities on Bob’s side. More formally, we define key-freshness
as follows.

8 We generalize a little here: typical AKE models also feature a key-revealing oracle, which does not necessarily
map to a compromise of Alice or Bob, but just to a partial state compromise for one particular session.
Key-freshness in [3] also stipulates of course that a session is no longer fresh if the key has been revealed.

14

Definition 9 (Key freshness). Let w,{ be the j-th instance of party P € USERS and let A be a PPT
adversary against LIKE. Set P’ < Fé.PlD. The key ﬂ,];.k is fresh if all the following conditions hold:
— 77,3;.04 =1, Py =0 when W,J;.a became 1, and ﬁé.p =0.
if 7rf; matches k, for k € N, then: nf,.a = 1, P'.y = 0 when wk,.a became 1, and ©f,.p = 0.
if no mk, matches 77,@, P’y =0.
— 3 A € AUTH and there is no RevealTD(sst, A, B, O, (4;)"_1,1) query made by A such that:
e A€ ﬂé.AID, Avy=0and A = Ay;
e IdentifySession(sst, %) = 1.

— 3 A’ € AUTH such that for all k € N such that wé matches 75, , there was no Reveal TD(sst, A, B, O, (4;)_4,1)

query made by A such that:
o N erk AID, A’y =0 and A" = A;;
e IdentifySession(sst, 7,) = 1.

The security of LIKE with roaming. Since we have modified the definition of key-freshness to account
for the presence of a second set of authorities, we can elegantly reuse the definition of key-security provided
by Arfaoui et al., as well as that for Non-Frameability (which we briefly recall below). Looking ahead,
we slightly modify the definition of the key-extractor, which is simplified with respect to that of [3] —
and then reuse the definition of the Honest-Operator property as is.

Key-Security. In the key-security experiment, the adversary plays the game in Figure 7 (left-hand side).
It has access to all the oracles presented earlier and eventually outputs a tuple made up of an index i, a
party P, and a guess bit d. The adversary wins if d is indeed the test bit associated to instance 7 (which
must be an instance of P), and if that instance is fresh in the sense of the key-freshness definition. The
advantage of A against Expf,?(E’A()\) is defined as:

KS L KS _ 1
AdVLlKE,A()\) = ‘Pr [EXpLIKE,A()‘> = 1})
Expl}f\iE‘A(/\): EXPN’:(E,A(/\): EXpEIaE“A(/\):
pp + Setup(1*); pp « Setup(1*) pp « Setup(1*);
Register (-, -, -), Send(, -),
NewSession(-, -,), . Register(-, -, -), Send(,), Reveal(-), . Register(, -, -), NewSession(-, -, -), Send(-,), | .
Oks Reveal(-), Reveal TD(-,), [’ One { NewSession(-, -, -), Reveal TD(-, -), Corrupt(, -) }’ Oro { Reveal(-), Reveal TD(, -), Corrupt(-, -) }’
Corrupt(-, -), Test(-)

(i,P,d) < A (), pp); (sst, P) < AN (X, pp); (jrsst, A, B, O, (4, 4;.td)iy) = A (X, pp);
If 7p.k is fresh and 7p.b = d, return 1;|[If 3 (A, B) € USERS?, n € N, O € OPS, (A;)I_; € AUTH" s.td.:|[TIf O. = 1 then return L;

Else b’ & {0, 1}, return &', Verify(pp, sst, A.PK, B.PK, O.PK, (4;.PK){_;) = 1; If Verify(pp, sst, A.PK, B.PK, O.PK, (4;.PK)i-;) = 0 then return L;
P e {A B} If IdentifySession(sst,).sid) = 0 then return 1;
P.y=0; k.. <— Open(pp, sst, (A;.PK)iLy, (Ai-td)iy);
Vi, if mp # L: IdentifySession(sst, mh) = 0 or mp.ac = 0, Return (k., 73, {P:i.PK}Z,).

Then return 1,
Else return 0.

Fig. 7. Games for key-security (KS, left), non-frameability (NF, middle), and honest-operator (HO, right).

We call the LIKE scheme key-secure if all PPT adversaries have at most a negligible advantage to
win.

Non-Frameability. In the non-frameability game, A has access to all but the testing oracle, and it
eventually outputs a session-state/party tuple. The adversary wins if party P never took part in (or
never completed) the session that yielded sst. This is captured by the experiment in Figure 7. We define
the advantage of A as

AdVE‘lFKE,A(A) =Pr [EXPHFKE,A(A) = 1] .

An LIKE scheme is non-frameable if all PPT adversaries have at most a negligible advantage to win
the NF game.

15

Honest operator. In the HO game, the adversary wants to make the lawful-interception process per-
formed on a specific completed session somehow fail (i.e., retrieve a different key than should be recov-
ered, or not to retrieve a key at all). The definition depends on a simulator called the extractor, whose
job is to retrieve, from a session state, the key that Alice and Bob should have computed. Note that,
since in this game Alice and Bob are malicious, they cannot be compelled to compute — or in fact use
— the key that is yielded by our scheme; however, we can compel them to run the protocol correctly to
completion. This is the main task of the operators, who have to check all the signatures, as well as the
proofs of well-formedness of Ha and Hg provided by the endpoints.

We present here our modified key-extractor definition, which takes into account the fact that opening
procedures are somewhat unilateral. In addition, we have strengthened the key-extraction requirement
so that the extractor must be able to recover the session key based only on transcript equality.

Definition 10 (Key extractor). For any LIKE, a key extractor Extract(,-) is a deterministic un-
bounded algorithm such that, for any integers n and m, users A and B, operators Oa and Og, and vec-
tors of authorities (AM)™_; and (AB)™,, any set {pp, A.PK, A.SK,B.PK, B.SK, Oa.PK, Oa.SK, Og.PK,
0g.SK, k, ssta, sstg, APKa = (A;APK);”:D (A;ASK)Zl:l, APKg = (A?PK);W;D (A?SK)ZTLI, TA,TB,PPK}
generated as follows:

pp + Setup()); (A.PK, A.SK) < UKeyGen(pp);

(B.PK, B.SK) - UKeyGen(pp);

(Oa.PK,0a.SK) < OKeyGen(pp);

(Og.PK, Og.SK) + OKeyGen(pp);

Vi € [1,n], (A2.PK, AX.SK) + AKeyGen(pp);

Vi € [1,m], (AB.PK, AB.SK) <+ AKeyGen(pp);

(k, ssta, sstg, k) +— AKE(A(A.SK), Oa(0a.SK), Og(0g.SK), B(B.SK))(pp, A.PK, B.PK, APKa, APKg);

Ta is the transcript of the execution yielding sstp from Oa’s point of view;

T 18 the transcript of the execution yielding sstg from Og’s point of view,;

PPK « {Oa.PK,Og.PK,A.PK, B.PK} U {A%.PK}_, U {AB.PK}™, ;

it holds that for any P € {A, B} and any instance © such that w.T = 7p, then: Pr[Extract(m,PPK) = k] =1

Notice that our extractor is unbounded, as it must be in order to preserve key security (otherwise
the extractor would allow the operator to find the session key).

A scheme is honest-operator secure if there exists an extractor that makes the adversary’s advantage
in the honest-operator game (right-hand side of Figure 7) negligible as a function of A\. The advantage is
defined as: Adviigg 4(A) =

(ks o, PPK) = Explige a(\); K # LA ko# L]

P :
" | k « Extract(rg, PPK) Ak#k,

A.4 Security statement

The theorem below quantifies the guarantees that our new protocol provides. We give the most compli-
cated proof (key-security) in the appendix, but, due to space restrictions, only include sketches for the
other two properties. Our full proofs can be found in our full paper [14]. Henceforth, let sid := X||Y,
and define IdentifySession(sst, 7) for party P and j € N as follows: parsing sst as (b||A||B||(A;)r [| XY |
oblloallodlloo|| H|[ni), then IdentifySession(sst, 75) returns 1 iff X||Y = mj.sid, and if 7 plays the role of
Alice then P = A and 7}.PID = B, else 73.PID = A and P = B.

Theorem 1. Assuming that we instantiate our protocol with an EUF-CMA-secure signature scheme.
Then our scheme:
— is non-frameable. Moreover, for all PPT A, making at most g, queries to Register, AdeiE’A()\) <
gr - Advps” ().
— is honest-operator secure if, additionally, the proofs and signatures of knowledge are zero-knowledge
and extractable. Moreover, for all PPT adversaries A doing at most q, queries to the oracle Register,

we have:
Adviike,4(N) < g < g - (eN.poK(A) + €sok (A) + AdVEgF'CMA(/\)) :

16

— is key-secure if in addition the proofs and signatures of knowledge are extractable and zero-knowledge,
and the DDH assumption holds. Moreover, for all PPT adversaries A making at most q, (resp. gns,
gs, and q) queries to Register (resp. NewSession, Send, and RevealTD):

2
q .
Adviike 4(N) < LT @ (AdVELs’F CMA(N) + gns - g+

((2 "Gt 1 Gs) - €50k (A) +qr - entPok (A) + 3 - AdvDDH(/\))> .

B Correctness

Correctness of LI. Let us examine the correctness of the algorithm on one side of the conversation,
say on Alice’s side. The ciphertext used in the opening algorithm is H = Hp (ha - Y)” = R -

n x
(Y*). We substitute in the value of ha, which yields H = < Af‘.pk) ~ka = ((Al-A.pk)r> cka =
AL A

2 (2

==

n x
(H (gA?'SK>) - ka. Note that we can switch the left-hand exponents, as gAﬁ'SK""” = g””'A?'SK, and thus:
i=1

n A n
H = (H (gr)/l,i .SK) kp = (H XA?.SK) - Kka.
i=1 i=1
During Lawful Interception, each authority A% generates as its first trapdoor element A%.td; = X 455K
(the second element is a proof of well-formedness of that trapdoor, with respect to the authority’s private

key). During opening, the key is retrieved as:

T ANSK Y
~ HA HA _ (iHI) A

kA = o = o = o = kA
Hi:l (A;.tdq) Hi:l X A7.SK Hi:l X A2SK

C Security Proofs

C.1 Key-security

Proof. Let LIKE denotes our protocol. We show that Advf,?(E’ 4(A) is negligible for any PPT adversary
A by using the following sequence of games:

Game Gg: This game is the same as ExpﬁSKEA(/\).

Game Gi: This game is similar to Gg, but aborts if the Send oracle returns twice the same element as
X or Y. An abort only happens if two out of the gs queried instances choose the same randomness from
G (which is of size p), yielding:

|Pr[A wins Go] — Pr[A wins G1]| < ¢2/p.

Let 71',@** denote a tested instance. Excluding collisions for X and Y implies that 7T|i§; now has at most
one matching instance. Indeed, suppose two or more instances matching wé** exist. We parse wé** .sid as
Zy||Z1 where Z; (for i € {0,1}) was generated by 77,@**.

By Def. 8, all instances matching 7rf;* must sample the same Z;_; € G — impossible after G;.

Game Go: Let P; be the i-th party instantiated by Register. Game Gy proceeds as Gp except that it
begins by choosing (u, v, w) & [1, qns] X [1,q]?. If A returns (i, P.,d,) such that, given P’ <« wé;‘*.PID,
we have i, # u or P, # P, or P, # P, , then Gy aborts, returning a random bit (here, the challenger

guesses the tested party instance, the associated party, and its purported partnering user). The adversary
increases its winning advantage by a factor equalling the probability of guessing correctly:

|Pr[A wins Gi] — 1/2| < gus - ¢2|Pr[A wins Go] — 1/2].

17

Game Ggz: Let (ix,P.,d.) be the adversary’s test session that Gy guessed. Let P/, «+ wé**.PID. Game

Gg3 works as Gg, except that, if there exists no 7r’,§, matching 77,@**, the experiment aborts and returns a
random bit. For any adversary A:

|Pr[A wins Go] — Pr[A wins Gs] | < AdvEgmMA(\).

Assume to the contrary that there exists an adversary A that wins Go with probability € 4(A) by returning
a guess (iy, Py, d,) such that, setting P/, + 7rf;**.PID7 no k € N exists such that w;** and Wé; match. Game
G2 demands P}, « P,, (guessed by Gs); key-freshness (Def. 9) requires P,, to be uncorrupted and ending
in an accepting state. We use A to build a PPT adversary B that breaks the EUF-CMA security of DS
with non-negligible probability. B receives the verification key PK, initializes Lg <« 0, and faithfully
simulates Go to A, except for A’s following queries:

Oracle Register(P,role, PK): If P = P,, with P.PK = L, then B sets P.PK « PK.

Oracle Send(w, m): There are two particular cases: P = P, and P = P,. If P = P,,, then B queries
its Sig(-) oracle to answer A’s queries. Depending on the role of P,, and the protocol step, B runs one
of: o + Sig(A|B||X||Y), oa + Sig(A|B|| X||Y||cg) or o3 «+ Sig(A||B|| X|Y|oglloa). Here, if P, is the
initiator, A||B = Py||P.PID; else A||B = P,,.PID||P,,. The message/signature pairs are stored in Lg.
Since sid = X||Y the elements X and Y, and the identities P, and mp .PID are parts of the message
signed in oa, of, and o3.

If P =P, i =i and 75.PID = P, if SVer(P,.PK,03,A|B|X||Y|cgllca) = 1, B aborts, re-
turning (A||B||XHYHUB||0A,UY) Otherwise, if SVer(P,,.PK,oa,A|B| X||Y]|c}) =1, B abortb returning
(AIBIX Y b, on).

Oracle Corrupt(P): If P = P, B aborts (due to Gz).

B wins if it sends its challenger a message/signature pair (M, o) & Lg such that SVer(PK, o, M) =1
with PK = P,.PK. We first argue that A must query Send on input P = P,, i = iy, and 75.PID =
P, on message Mg = A||B|| X|Y|oklloa such that SVer(P,,.PK, 03, Mg) = 1, or on message Mp =
L such that SVer(P,,.PK,oa, Mg) = 1. Indeed, if A does not, the (honest) target instance

T, rejects.

Now we can assume that A has queried Send either with oa or with og as above. We have two
cases: the submitted message/signature pair is in Lg, or it is not. If the latter happens, clearly B wins.
Assume that the former happens, i.e., the signature o3 or oa are in Lg (generated by B’s oracle). We
recall that by assumption A’s challenge instance has no matching instance, i.e., there exists no ﬂé such

that 7TP .sid # L or 7TP .sid = wé,* .sid. However, if 7rP sid # 7 sid, then then A must have somehow
completed the target session (key-freshness) and used the forged signature as input to at least one Send
message (for Alice’s signature or for Bob’s second sig, depending on the role of P.). This message was
not created/output by B, so it can’t be in the list, so B also wins.

Thus, Advgg’FgCMA()\) = €4(A), concluding the proof.

After G, Gs, either a unique instance 7j —exists, matching 75 = Wé,** or the experiment returns a
random bit.
Game G4: Game G4 runs as Gg except that it begins by picking r & [1,gns] (a guess for the matching
instance). If A returns (i, P.,d.) such that ﬁ,i;; and 7p =~ do not match, then the experiment returns
a random bit. The advantage of A on G4 increases w.r.t. that in Gz by a factor equalling the correct
guessing probability :

|Pr[A wins Gs] — 1/2] < gns|Pr [A wins G4] — 1/2|.

Game Gs: Game Gy proceeds as Gy, except that it begins by picking (I1,12) & [1,¢]>. If the I;-th or
the lo-th party queried to the oracle Register is not authority, or if it is an authority (we will denote it
Aj or Aj)) who is corrupted, or if RevealTD is called on (sst,A, B, (4;)i-;,l) such that A; = A} and
IdentifySession(sst, 7¢ .sid) = 1, or if A; = A} and ldentifySession(sst, 7} .sid) = 1, then the experiment
aborts by returning a random bit. Note that g is the tested instance and 7p = is the unique instance
that matches mp = so, by key-freshness (Def. 9), if no index l; and Iy exists such that A} and A7) are
uncorrupted, and RevealTD has never been called on the query (sst,A, B, (4;)i_;,1) such that A; = A},
and IdentifySession(sst, g .sid) = 1, and RevealTD has never been called on the query (sst, A, B, (4;)7_,1)
such that 4; = A}, and IdentifySession(sst, 6., .sid) = 1, then the experiment returns a random bit. Thus,
the advantage of A in Gj is superior to that in G4 by a factor equalling the guessing probability:

|Pr[A wins G4] — 1/2| < ¢,*|Pr[A wins Gs] — 1/2].

18

Game Gg: Let Ext denote the knowledge extractor of the signature of knowledge. This game is the same
as Gy except that it begins by initializing £[] + 0 and:

— each time the Send oracle generates a SoK ni of an element d & Zy (the exponent) for elements
g1, D1, g2 and Dy such that Dy < g‘li and Doy +— gg (D1, D2 have equal exponents) for the message
w, it sets L[(g1, D1, g2, D2, w, ni)] « d;

— each time the oracles Send or Reveal TD verify a valid signature of knowledge SoKver(w, (g1, D1, g2, D)
,ni) = 1 in a query made by A with L[(g1, D1, g2, D2, w, ni)] = L, it runs the key extractor Ext(\)
on A to extract the witness d that matches the proof ni. If g¢ # Dy or g§ # D, then the experiment
aborts by returning a random bit, else it sets L£[(g1, D1, g2, D2, w, ni)] < d.

The difference between Gs and Gg is the possibility of the extractor failing when it is called. Since
Reveal TD requires 2 calls (for the verification of sst) and Send, one at each query,

|Pr[A wins Gs] — Pr[A wins Gg]| < (2 gt + ¢s) - €sok ().

From this step, for any non-simulated SoK ni (regardless of who generated it between the challenger and
the adversary) on a statement (g1, D1, g2, D2) and a message w, the list £ stores the corresponding secret
d at the index (g1, D1, 92, D2, w, ni).
Game G7: Let Ext denote the extractor of the ZK proof of knowledge NIPoK {d D= gd}. Game G7
runs as Gg, except it begins by initializing an empty list £'[] + @ and:
— Honest authority: if Register generates (A.PK, A.SK) for an authority A, it sets £'[A.PK] « A.SK;
— Malicious authority: if Register receives a query (A4, role, PK) with role = authority and PK # L,
it sets PK <— A PK and parses PK as (A.pk, A.ni).
If NIPoKver((g, A.pk), A.ni) = 1, G7 runs the extractor Ext(\) on A to get the witness A.SK for A.ni.
If g4SK £ A.pk then the experiment aborts by returning a random bit, else it sets £'[A.PK] + A.SK.
Once more, the difference between the games is the possibility that Ext fails in at least one of the calls
to the registration oracle, yielding:

|PI’ [A wins Gg} — Pr [.A wins Gﬂ | < qr ENIPoK()\)~

From this step, for any authority public key A.PK coupled with a non-simulated PoK ni (regardless of
who generated it between the challenger and the adversary), the list £’ stores the corresponding secret
key A.SK at the index A.PK.

Game Gs: This game is the same as G7 except that during the session between 7p and 7p , the group
element Hp, is chosen at random according to the uniform distribution on G, and the proof nip, is
simulated. We claim that:

Pr[A wins G7] — Pr[A wins Gg] | < AdvBPH(\)

We prove this claim by reduction. We build a distinguisher B for a DDH instance (U, Vi, W).

In what follows, Simppok denotes the simulator of the proofs of knowledge and Simsok, the simulator
of the signature of knowledge. For the sake of simplicity, and since it is often clear from the context, we
use the same notation to refer to the simulators of the two different NIPoK systems (DLog and exponent
equality) that we use in our protocol.

Tt sets pp + (A, G, p, g) and runs A(pp). It simulates G; to A as in the real game except for:

— Register(P,role, PK) — P.PK: On the I{" party, if role # authorities or PK # L1, B aborts
and returns a random bit, else it sets Af < P; A} .pk <= Us; A} .ni <= Simnipok (9, Ux); A7 .PK
(A7, -pk, A7 .ni) and returns A7 .PK.

— Send(wb, m): If P = P, and i = r, then if P plays the role of Alice, B sets x. « x and X, <+ X, else
B sets y. < y and Y, < Y (where (2, X) or (y,Y) are generated as in the real protocol). If P = P,
and 7 = u, then:

e if P plays the role of Alice, B proceeds as in G; except that at the first step it does not generate
r and sets X < Vi and X, < X, and at the second step, it parses w5 .AID as (A?‘)?:l, it sets
SetAu « {A]A-}?:l \{4] } and sets:

L'[A.PK .
Ha < [1esetau (X* [}) W X

It then runs nip < Simsok(w, (9, Xs, ha, Ha)), where w = (P,|Py|75 .AID). Finally, it sets
h« < ha and H, < Hp (where ha is generated as in the real protocol).

19

e if P plays the role of Bob, then B proceeds as in G; except that it does not generate y and sets
and Y « V, and Y, « Y, then it parses 7§ .AID as (AF)7.,, it sets SetAu « {A?};n:l \{4; }
and sets:

Hg < [Taesetau (Y WY
It then runs nig <= Simsok (w, (9, Y, he, Hp)), where w = (P[P, |75 .AID). Finally, it sets h. <
hg and H, < Hpg (where hg is generated as in the real protocol).
— Reveal TD(sst, A, B, (4;)7_;,1): B parses sst as (b]|w'|| X||Y||og||oallod||oo|| H|ni) and sets w < (A]| B]|(A
sets (Zo, Z1) < (X,Y), (2§, Z7) «+ (X, Ys), and h <[], A;.pk.

o If IdentifySession(sst,ng.sid) =1 and 4; = A} , then B aborts and returns a random bit, like in
the key-freshness definition.

o If IdentifySession(sst, 7y .sid) = 1 and A; # Aj , then B knows the secret key of A;. It acts as
in G; except that it computes A;.td; « V£l Al PK , Ap.tdy < Simnipok (g, A;.pk, Zp, Aj.tdy) and
Aj.td (Al.tdl, Al.tdg).

e If IdentifySession(sst, g .sid) # 1 and A; = Aj, then IdentifySession(sst, 7§ .sid) # 1, which
implies that X ||Y||A||B # X.||Y«||Po||Pw (or X.||Yi||Pw]||P, depending on who plays the roles of
Alice and Bob). B acts as in G7 except that:

* if A[IB[|(Ai)jz; # PullPuwllmp AID (or Py|Py||ms .AID, if PU plays the role of Bob), then
the algorithm B computes A .tdy < (4}, pk)£llg:Ze.h HownD] A tdy — Simyipok (9, A7 -pk, Zp,
Aj tdy) and A td « (A7 tdl,/l .tda). 'In this case, L[(g, Zb,h,H,w,ni)] (recall this is the
list in Game GG) is always defined because w # Py||Pyllmp, .AID (or Py|P,|l7g .AID if P,
plays the role of Bob).

* if AHB||(i)izy = Pul[Pullmg AID (or Py||P,[|7p .AID, if P, plays the role of Bob) and
Z1-p = Z]_y, then Z), # Zy, and the algorithm B computes A7, .td « (/12‘1.pk)ﬁ[(gvzb*th“‘”"i)];
Atdy SimN|poK(g,A?‘1.pk, Zb,/lz‘l.tdl) and A .td < (/12‘1.td1,/12“1 .tdy). In this case, since
Zy # Zy, then L[(g, Zy, h, H,w, ni)] is always defined.

* else if A||B||(O, =Py HPwH’]TP AID (or Pyl|Py|Img .AID, if P, plays the role of Bob) and
Zy=Z;, then Z1_y # Z7_,, which implies that:

b= (ﬁ Ai.pk> Ty A <H A pk) 71, = h,

i=1 i=1
s0 h # hy. Bruns A} .tdy < (A* .pk)~ [(9,Zy,h, H w,ni) Afl tdg < Simpyipok (9, A7 -pk, Zp, Af .tdq)
and A .td « (Afl.tdl, A} tdy). In this case, since h # hy, then L[(g, Zp, h, H,w, ni)| is always
defined.

J=0

£'[A.PK]

At the end of the game, A returns a bit b., then if b, = 7p .b, then B returns 1, else it returns 0.
Let (u4,vs) be an element of (Z;’;)2 such that U, = ¢g** and V, = ¢g**. We set Afl.SK — Uy
If P, plays the role of Alice in ng, then we set x, < v,. With these notations, we have X, = ¢”~

and A} .pk = gAz‘l‘SK. If W, = g*="=, then W, = (A} .pk)* and:

H,= HAGSetAu X*ﬁl[/}.pk]) W XY
= [aesetau gﬁl[A'pk]'z*> ' (Afl.Pk)m* g
= (I (A8pk) - Ya) ™ = (hy - i)™

In this case, G7 is perfectly simulated for A, On the other hand, if W, is a random value, then Gg is
perfectly simulated for A. If P, plays the role of Bob in 7 , we can show in a symmetric way that if
W, = g+ then Gy is perfectly simulated for A, otherwise Gg is perfectly simulated for A. We deduce
that:

— Pr[A wins G7] = Pr

$ *
(U*7U*) — (Zp)Q; :b=1| and
b B(gu*’gv*7gu*~1)*)

— Pr|A wins = Pr (s Vs, W) = (Z*) =
Pr[A wins Gs] = P [beg(L 11

which concludes the proof of the claim.

20

)z 1)

Game Gg: This game is the same as Gs except that during the session between 7 and 7p , the group
element Hp is chosen at random in the uniform distribution on G, and the proof nip,, is simulated. We
claim that:

’Pr [A wins Gs] — Pr [A wins Go] ‘ < AdvBPH ()

This claim can be proven in a similar way as for Gs.
Game Gig: This game is the same as Gg except that the oracle Test always returns a random value. We
claim that:

‘Pr [A wins Qo] — Pr [A wins Gg] ‘ < AdvBPH ()

We prove this claim by reduction. We build a distinguisher B against a DDH challenge (X, Y, Z.).
It sets pp < (A, G,p,g) and runs A(pp). It simulates Gg to A as in the real game except for the
following special cases:

— Send(wb, m): If P =P, and i = u, or if P = P,, and i = r, then:
e if P plays the role of Alice, then B proceeds as in G7 except that it sets X < X,.
e if P plays the role of Bob, then B proceeds as in G7 except that it sets Y + Y.
At the end of the protocol, 7j.k is not instantiated.
— Test(nb): If P =P, and i = u, then it returns Z,

At the end of the game, A returns a bit b, then if b, = 7g .b, then B returns 1, else it returns 0. If
Z, = X!, then Gg is perfectly simulated for A. On the other hand, if Z, is a random value, then Gy is
perfectly simulated for .A. We deduce that:

— Pr[A wins Gg] = Pr

8 *
(37*,9*) — (Zp)2; :b=1| and
b «— B(gx*,gy*,gx*-y*)

$ *\3.
— Pr[A wins Gg] = Pr (@a 4, 20) = (L) — 1|
b B(g™, 9", 9%);

which concludes the proof of the claim. Finally, since Gip do not depend on 7pg .b, we have that
Pr[A wins Gg] = %7 cncluding the proof of the theorem.

C.2 Proof sketches: NF and HO

Due to space restrictions, we only provide sketch proofs for the non-frameability and honest-operator
security statements.

Non-frameability. In the NF experiment, the adversary’s goal is to make the verification algorithm
believe that a given user, say Alice, has taken part in a session, although this is false. In our protocol,
both Alice and Bob include at least one signature in the session state, and this signature is checked by
the verification algorithm. Thus, except through forgeries, the adversary cannot win.

Honest operator. For the HO proof, we first have to provide a (non-polynomial) extractor for the
key. This extractor recovers the key-shares X and Y and then finds, by exhaustive search, the discrete
logarithm y of Y, using it to compute X¥. We then have to show that no adversary can cause authorities
to recover, from a given sst that verifies and represents a completed session, a key different than that
recovered by the extractor. The proof first uses the unforgeability of the operator’s signature, essentially
making sure that the sst was validated by an operator. Then, the security of the NIPoKs and SoKs
ensure that the two endpoints, Alice and Bob, have in fact embedded the same key-shares (and the
correct authority keys) in their auxiliary strings Ha and Hg. Once this is true, the correctness of LI
guarantees the final result.

21

